Math 8 Curriculum

This curricula and accompanying instructional materials have been developed to align with the NJSLS and in accordance with the NJ Department of Education's guidelines to include: Curriculum designed to meet grade level expectations, integrated accommodations and modifications for students with IEPs, 504s, ELLs, and gifted and talented students, assessments including benchmarks, formative, summative, and alternative assessments, a list of core instructional and supplemental materials, pacing guide, interdisciplinary connections, integration of 21* century skills, integration of technology, and integration of 21^{*} Century Life and Career standards.

About the Standards

In 1996, the New Jersey State Board of Education adopted the state's first set of academic standards called the Core Curriculum Content Standards. The standards described what students should know and be able to do upon completion of a thirteen-year public school education. Over the last twenty years, New Jersey's academic standards have laid the foundation for local district curricula that is used by teachers in their daily lesson plans.

Revised every five years, the standards provide local school districts with clear and specific benchmarks for student achievement in nine content areas. Developed and reviewed by panels of teachers, administrators, parents, students, and representatives from higher education, business, and the community, the standards are influenced by national standards, research-based practice, and student needs. The standards define a "Thorough and Efficient Education" as guaranteed in 1875 by the New Jersey Constitution. Currently the standards are designed to prepare our students for college and careers by emphasizing high-level skills needed for tomorrow's world.

The New Jersey Student Learning Standards include Preschool Teaching and Learning Standards, as well as nine K-12 standards for the following content areas: 21st Century Life and Careers, Comprehensive Health and Physical Education, English Language Arts, Mathematics, Science, Social Studies, Technology, Visual and Performing Arts, World Languages

Interdisciplinary Connections

LA.8.W.1 - Write arguments to support claims with clear reasons and relevant evidence.

Integration of Technology

9.4.8.TL.1: Construct a spreadsheet in order to analyze multiple data sets, identify relationships, and facilitate data-based decision-making.
9.4.8.TL.2: Gather data and digitally represent information to communicate a real-world problem (e.g., MS-ESS3-4, 6.1.8.EconET.1, 6.1.8.CivicsPR.4).
9.4.8.TL.3: Select appropriate tools to organize and present information digitally.
9.4.8.TL.4: Synthesize and publish information about a local or global issue or event (e.g., MSLS4-5, 6.1.8.CivicsPI.3).
9.4.8.TL.5: Compare the process and effectiveness of synchronous collaboration and asynchronous collaboration.
-
9.4.8.TL.6: Collaborate to develop and publish work that provides perspectives on a real-world problem.

21* Century Skills

9.4.8.CI.1: Assess data gathered on varying perspectives on causes of climate change (e.g., cross cultural, gender-specific, generational), and determine how the data can best be used to design multiple potential solutions (e.g., RI.7.9, 6.SP.B.5, 7.1.NH.IPERS.6, 8.2.8.ETW.4).
9.4.8.CI.2: Repurpose an existing resource in an innovative way (e.g., 8.2.8.NT.3).
9.4.8.CI.3: Examine challenges that may exist in the adoption of new ideas (e.g., 2.1.8.SSH, 6.1.8.CivicsPD.2).
9.4.8.CI.4: Explore the role of creativity and innovation in career pathways and industries.
9.4.8.CT.1: Evaluate diverse solutions proposed by a variety of individuals, organizations, and/or agencies to a local or global problem, such as climate change, and use critical thinking skills to predict which one(s) are likely to be effective (e.g., MS-ETS1-2).
9.4.8.CT.2: Develop multiple solutions to a problem and evaluate short- and long-term effects to determine the most plausible option (e.g., MS-ETS1-4, 6.1.8.CivicsDP.1).
9.4.8.CT.3: Compare past problem-solving solutions to local, national, or global issues and analyze the factors that led to a positive or negative outcome.
9.4.8.DC.1: Analyze the resource citations in online materials for proper use.
9.4.8.DC.2: Provide appropriate citation and attribution elements when creating media products (e.g., W.6.8).
9.4.8.DC.3: Describe tradeoffs between allowing information to be public (e.g., within online games) versus keeping information private and secure.
9.4.8.DC.4: Explain how information shared digitally is public and can be searched, copied, and potentially seen by public audiences.
9.4.8.DC.5: Manage digital identity and practice positive online behavior to avoid inappropriate forms of self-disclosure. •
9.4.8.DC.6: Analyze online information to distinguish whether it is helpful or harmful to reputation.
9.4.8.DC.7: Collaborate within a digital community to create a digital artifact using strategies such as crowdsourcing or digital surveys.
9.4.8.DC.8: Explain how communities use data and technology to develop measures to respond to effects of climate change (e.g., smart cities).
9.4.8.GCA.1: Model how to navigate cultural differences with sensitivity and respect (e.g., 1.5.8.C1a). • 9.4.8.GCA.2: Demonstrate openness to diverse ideas and perspectives through active discussions to achieve a group goal.
9.4.8.IML.1: Critically curate multiple resources to assess the credibility of sources when searching for information.
9.4.8.IML.2: Identify specific examples of distortion, exaggeration, or misrepresentation of information.
9.4.8.IML.3: Create a digital visualization that effectively communicates a data set using formatting techniques such as form, position, size, color, movement, and spatial grouping (e.g., 6.SP.B.4, 7.SP.B.8b).
9.4.8.IML.4: Ask insightful questions to organize different types of data and create meaningful visualizations. •
9.4.8.IML.5: Analyze and interpret local or public data sets to summarize and effectively communicate the data.
9.4.8.IML.6: Identify subtle and overt messages based on the method of communication.
9.4.8.IML.7: Use information from a variety of sources, contexts, disciplines, and cultures for a specific purpose (e.g., 1.2.8.C2a, 1.4.8.CR2a, 2.1.8.CHSS/IV.8.AI.1, W.5.8, 6.1.8.GeoSV.3.a, 6.1.8.CivicsDP.4.b, 7.1.NH.

IPRET.8).
9.4.8.IML.8: Apply deliberate and thoughtful search strategies to access high-quality information on climate change (e.g., 1.1.8.C1b).
9.4.8.IML.9: Distinguish between ethical and unethical uses of information and media (e.g., 1.5.8.CR3b, 8.2.8.EC.2).
9.4.8.IML.10: Examine the consequences of the uses of media (e.g., RI.8.7).
9.4.8.IML.11: Predict the personal and community impact of online and social media activities.
9.4.8.IML.12: Use relevant tools to produce, publish, and deliver information supported with evidence for an authentic audience.
9.4.8.IML.13: Identify the impact of the creator on the content, production, and delivery of information (e.g., 8.2.8.ED.1).
9.4.8.IML.14: Analyze the role of media in delivering cultural, political, and other societal messages. -
9.4.8.IML.15: Explain ways that individuals may experience the same media message differently.

Career Education

9.2.8.CAP.1: Identify offerings such as high school and county career and technical school courses, apprenticeships, military programs, and dual enrollment courses that support career or occupational areas of interest.
9.2.8.CAP.2: Develop a plan that includes information about career areas of interest.
9.2.8.CAP.3: Explain how career choices, educational choices, skills, economic conditions, and personal behavior affect income.
9.2.8.CAP.4: Explain how an individual's online behavior (e.g., social networking, photo exchanges, video postings) may impact opportunities for employment or advancement.
9.2.8.CAP.5: Develop a personal plan with the assistance of an adult mentor that includes information about career areas of interest, goals and an educational plan.

Lower Cape May Regional School District Mathematics Curriculum	
Content Area: Mathematics	
Course Title: Pre Algebra Grade 8	Grade level: 8
Unit 1: Number Sense	
Unit 2: Expressions and Equations	
Unit 3: Functions	
Unit 4: Geometry days	
Unit 5: Probability and Statistics	

Lower Cape May Regional School District Mathematics Curriculum Unit 1 Overview
Content Area: Mathematics
Unit Title: Unit 1 - The Number System

Target Course/Grade Level: Grade 8

Unit Summary:

This unit explores the study of numbers that are rational and irrational. The value of irrational numbers will be approximated using rational numbers. A clear understanding of irrational numbers will be demonstrated using number lines, models, and expressions of approximations and estimations.

The unit also examines integer exponents, exponent rules, and scientific notation. Very large and very small numbers can be made easier to use and compare using scientific notation which, in turn, uses exponential expressions. Students will also discover different exponent rules and their applications.

Learning Targets

CPI \#	Cumulative Progress Indicators (CPI) for Unit
8.NS.A.1	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually,and convert a decimal expansion which repeats eventually into a rational number.
8.NS.A.2	Use rational approximations of irrational numbers to compare size of irrational numbers, locate them approximately on a ber line diagram, and estimate the value of expressions (e.g. π^{2}).
8.NS.A.3	Understand that the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

$\left.\begin{array}{|c|c|}\hline \text { 8.EE. } 1 & \begin{array}{l}\text { Know and apply the properties of integer exponents to generate } \\ \text { equivalent numerical expressions.For example, } 3^{2} \times 3^{-s}=3^{3}= \\ (1 / 3)^{3}=1 / 27 .\end{array} \\ \hline \text { 8.EE.2 } & \begin{array}{l}\text { Use square root and cube root symbols to represent solutions to } \\ \text { equations of the form } \mathrm{x}^{2}=\mathrm{p} \text { and } \mathrm{x}^{3}=\mathrm{p}, \text { where } \mathrm{p} \text { is a } \\ \text { positive rational number. } \\ \text { a. Evaluate square roots of small perfect } \\ \text { squares and cube roots of small } \\ \text { perfect cubes. Know that } \sqrt{2} \text { is } \\ \text { irrational. }\end{array} \\ \text { b. Simplify numerical radicals, limiting to } \\ \text { square roots (i.e. nonperfect squares). } \\ \text { For example, simplify } \sqrt{8} \text { to } 2 \sqrt{2}\end{array}\right\}$

Unit Essential Questions:

- What strategies can you use to compare and order rational and irrational numbers on a number line?
- How can you distinguish between rational and irrational numbers?
- Can you name a number that is both irrational and rational? Explain why or why not.
- How do perfect squares help you locate the square root of non-perfect squares such as on a number line?
- How are properties of exponents used to simplify numerical expressions?
- How is scientific notation used to represent numbers?

Unit Enduring Understandings:

- Numbers can be represented in a variety of forms that do not change the value of the number.
- All numbers belong to the set of complex numbers. Within that set are many subsets that help us
describe and characterize numbers by their properties.
- A rational number is a number (value) within the real number system that can be expressed as a fraction, a / b where a and b are integers and $b \neq 0$). Rational numbers consist of fractions that either terminate or repeat.
- An irrational number is a number (value) within the real number system that cannot be expressed as a fraction, a / b, where a and b are integers.
- An irrational number is a decimal that never terminates or repeats.
- Rational numbers and irrational numbers together form the set of real numbers.
- nth roots and nth powers are inverse operations.
- Very large and very small numbers are represented using a single digit times an integer power of 10 (scientific notation).
- Operations and properties of exponents are used to determine the value and/or compare numbers in both decimal and scientific notation.

Unit Objectives:

Students will know....

- that there are numbers that are not rational, and how to approximate them by using rational numbers.
- properties of exponents and how to use them to solve problems.
- how to apply knowledge of rational and irrational numbers to solve real world application problems.
- how to approximate/estimate square roots and cube roots to problem solve.
- how to apply and extend concepts of radical and integer exponents to simplify expressions and solve problems.
- conversion of standard numbers to scientific notation and vice versa.
- how to apply scientific notation to simplify and solve problems.

Unit Objectives:

Students will be able to......

- identify whether a number is rational or irrational by whether its decimal form is exact, repeating, or does not repeat.
- convert repeating decimal numbers into their fraction equivalents.
- estimate rational and irrational numbers in order to compare their relative size and location on a number line.
- describe and apply the properties of integer exponents to expressions.
- solve one-step equations requiring square or cube roots and determine when the solution is rational or irrational.
- evaluate square roots of small perfect squares and cube roots of small perfect cubes.
- explain why all square roots are irrational numbers.
- estimate and compare very large and very small quantities using scientific notation.
- determine how many times bigger one number is than another using scientific notation.
- describe when and where to use scientific notation and choose appropriate units for very large and very small numbers.
- compare, interpret and calculate values using scientific notation and decimal equivalents in the same problem.

Content Area: Mathematics

Unit Title: Unit 2 - Expressions and Equations

Target Course/Grade Level: Grade 8

Unit Summary: In the unit students will expand upon the fundamental rules of simplifying algebraic expressions. Students will build upon prior knowledge of solving one-step linear equations to solve more complex linear equations.

Students will also explore and quantify the connections among proportional relationships, lines, and linear equations. Students will use various representations including graphs, tables, and equations.

Learning Targets

CPI \#	Cumulative Progress Indicators (CPI) for Unit
8.EE.5	Graph proportional relationships, interpreting the unit rate as the slope of the graph.Compare two different proportional relationships represented in different ways. For example, compare a distance -time graph to a distance -time equation to determine which of two moving objects has greater speed.
8.EE.6	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane;derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.
	Give examples of linear equations in one variable with one

8.EE.7a	solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=$ $a, a=a$, or $a=b$ results (where a and b are different numbers).
8.EE.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
8.EE.8a	Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
8.EE.8b	Solve systems of two linear equations in two variables using the substitution method, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 . Solve $3 \mathrm{x}+\mathrm{y}=30$ and $\mathrm{y}=2 \mathrm{x}$ using the substitution method; Solve $y=3 x+1$ and $y=-2 x+7$ using the substitution method.
8.EE.8c	Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
$\begin{aligned} & \text { 9.1.8.B. } 4 \\ & \text { 9.1.8.D. } 3 \\ & 1 \end{aligned}$	Relate concept of deferred gratification to investment meeting financial goals, and building wealth. Differentiate among various investment options.

Unit Essential Questions:

- How can you use inductive reasoning to discover rules in mathematics and how can you test that rule?
- What are the various methods that can be used to evaluate and simplify numerical and algebraic expressions?
- What is the purpose of an equations?
- How do we apply mathematical properties and operations to solve equations?
- Why is the order of operation rule important to know when solving equations?
- How can you check the reasonableness of the solution to an equation?
- What does steepness of a line tell us about the magnitude of the rate of change?
- How are graphs, tables, and equations used to represent proportional relationships?
- What is the significance of the slope and the y-intercept in a linear equation?
- What is the significance of personal savings for future security.

Unit Enduring Understandings:

- Numerical and algebraic expressions can be simplified and evaluated using order of operations and computation of rational numbers.
- Equations are used to model real life situations.
- Inverse operations are used to solve equations.
- The intersection of two linear equations is a solution set that is true for both equations.
- The slope of a line is the constant rate of change and represents the steepness of a line.
- A proportional relationship has a constant rate of change, or unit rate, known as the slope and are linear equations of the form $\mathrm{y}=\mathrm{mx}$.
- Linear equations in one variable have one solution, no solutions, or infinitely many solutions.
- Financial security is based on saving strategies to meet financial goals.

Unit Objectives:
 Students will know....

- that to simplify multi-step numeric and algebraic expressions one must use order of operations, distributive property, combining like terms, and rational number rules.
- how to solve and check multi-step equations with rational coefficients.
- that linear equations have either one, none, or infinitely many solutions.
- that to solve an equation or formula the unknown variable must be isolated and solved for in terms of the other variables.

Unit Objectives:

Students will be able to......

- compare, contrast, and interpret multiple representations of proportional relationships (graphs, tables, equations, and verbal models).
- graph proportional relationships by using the unit rate as the slope of the graph.
- compare and contrast two different proportional relationships that are represented in different ways, i.e. an equation with a graph.
- write and interpret an equation for a line in slope-intercept form and determine the relationship is linear using similar triangles to show the slope is the same between any two points.
- write, solve, and interpret the solution set of multi-step linear equations in one variable.
- determine when a solution gives one solution, infinitely many solutions, or no solutions.
- apply the distributive property to algebraic expressions.
- combine like terms to simplify expressions and equations.
- write, solve, and interpret the solutions to systems of linear equations with two variables graphically and algebraically.
- recognize and explain the solution to a system of linear equations graphically (as a point of intersection).
- describe instances when a system of equations will yield one solution, no solutions, or infinitely many solutions.

Lower Cape May Regional School District Mathematics Curriculum Unit 3 Overview

Content Area: Mathematics

Unit Title: Unit 3 - Functions

Target Course/Grade Level: Grade 8

Unit Summary:

The ability to recognize and analyze functions is very useful in real life. In this unit, students will explore and understand the concept of a function as a rule that assigns to each input exactly one output. They will understand that functions describe situations where one quantity determines another. Students will translate among representations and partial representations of functions and describe how aspects of the function are reflected in the different representations. Students will also describe, identify, and graph nonlinear functions.

Learning Targets	
CPI \#	Cumulative Progress Indicators (CPI) for Unit
8.F.A. 1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
8.F.A.2	Compare properties (e.g. rate of change, intercepts, domain and range) of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

8.F.A.3	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.
8.F.B.4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
8.F.B. 5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
9.1.8.A.G	Relate how income affects spending decisions.

Unit Essential Questions:

- What is a function?
- Why is it important to know if the relationship between two quantities is a function?
- How can you use a mapping diagram to show the relationship between two data sets?
- How can you represent a function in various ways?
- How can you use a function to describe a linear pattern?
- How can you recognize when a pattern in real life is linear or nonlinear?
- How can you use a graph to represent relationships between quantities without using numbers?
- Why aren't all functions linear? When is an equation nonlinear?
- How can you model a plan for future financial security.

Unit Enduring Understandings:

- When two quantities represent a function, we can identify the dependent and independent variables and be confident that each input will give a unique output.
- A linear function can be written from a graph or a table of values.
- Understanding the difference between a relation and a function.
- We can represent a function by using an input/output table, graph, rule (equation) or mapping diagram, where each represents the same set of ordered pairs. Comparing linear and nonlinear functions.
- Sketches of graphs can be used to represent the relationship between two quantities.
- Linear functions are used to model, understand, and interpret real life data.
- A linear function has a constant rate of change and can be represented by a straight line. A nonlinear function has a variable rate of change and cannot be represented by a single continuous straight line.
- Linear functions are used to model financial security.

Unit Objectives:

Students will know....

- how to define, evaluate, and compare functions.
- what criteria make a relation a function.
- how to use functions to model relationships between quantities.
- how to compare two functions each represented in a different way, i.e. numerically, verbally, graphically, and algebraically.
- how to draw conclusions about a function's properties (rate of change and intercepts).
- How to classify functions as linear or nonlinear by analyzing equations, graphs, and tables of values.
- how to model a linear relationship by constructing a function from two (x, y) values.
- the meaning of the rate of change and initial value of the linear function in terms of the situation it models, and in terms of its graph or a table of values.
- how to sketch a graph of a function from a qualitative description and give a qualitative description of a graph of a function.
- How to differentiate among various investment options.

Unit Objectives:

Students will be able to......

- determine if a relation is a function using a table, graph, or set of ordered pairs.
- compare and contrast multiple representations of (tables, graphs, equations, and verbal models) of two functions.
- determine whether the relationship is a function in any type of representation.
- identify the rate of change and y-intercept for a linear function in any type of representation.
- determine if a function is linear or nonlinear from a table, equation, graph, or verbal model.
- write, graph, and interpret linear functions.
- construct a function to model a linear relationship from a table of values, two points, or verbal description.
- determine the rate of change (slope) and initial value (y-intercept) from a table and graph.
- explain the meaning of the rate of change and initial value of a linear function in terms of the situation it models
- describe the relationship between two quantities when given a graph.
- sketch a graph from a verbal description of a function.
- write function rules.
- Construct a function to model a relationship for financial security.

Lower Cape May Regional School District Mathematics Curriculum Unit 4 Overview

Content Area: Mathematics

Unit Title: Unit 4 - Geometry

Target Course/Grade Level: Grade 8

Unit Summary:

In this geometry unit students will study spatial sense and geometric reasoning with a focus on the study of congruence and similarity of figures. Students will explore distance, angles, and how they behave under translations, rotations, reflections, and dilations. Students will apply ideas about congruence and similarity to describe and analyze two-dimensional and three-dimensional figures and solve real life problems.

Students will also focus on understanding and applying the Pythagorean Theorem and its converse. They will apply the Pythagorean Theorem to find distances between points on the coordinate plane, to find lengths, and to analyze polygons. Finally, students broaden their understanding of volume by solving problems involving cones, cylinders, and spheres.

Learning Targets	
CPI \#	Cumulative Progress Indicators (CPI) for Unit
8.G.1.a	Verify experimentally the properties of rotations, reflections, and translations: Lines are transformed to lines, and line segments to line segments of the same length.
8.G.1b	Verify experimentally the properties of rotations, reflections, and translations: Angles are transformed to angles of the same measure.
	Verify experimentally the properties of rotations,

8.G.1c	reflections, and translations: Parallel lines are transformed to parallel lines.
8.G. 2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits congruence between them.
8.G. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates
8.G. 4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
8.G. 5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
8.G. 6	Explain a proof of the Pythagorean Theorem and its converse.
8.G. 7	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
8.G. 8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
8.G. 9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Unit Objectives:
 Students will know....

- congruence and similarity can be understood by using physical models, transparencies, or geometry software.
- the Pythagorean Theorem is used to determine the unknown side lengths of right triangles in two and three dimensions to solve real-world and mathematical problems.
- the Pythagorean theorem is used to determine the distance between two points in the coordinate plane.
- an explanation of a proof of the Pythagorean Theorem and its converse.
- how to solve real-world and mathematical problems involving volume of cylinders, cones and spheres.
- about angle relationships of intersecting and
- parallel/transversal lines.
- the different relationships that exist between similar figures.
- the effects of rotations, reflections, translations, and dilations on one-, two-, and three-dimensional figures.

Unit Objectives:
Students will be able to......

- know and apply the formulas for volumes of cones, cylinders, and spheres.
- find the heights of cylinders or cones given the volumes.
- find the radii of spheres given the volumes.
- understand the relationship between surface areas of similar solids.
- understand the relationship between volumes of similar solids.
- describe and apply the properties of translations, rotations, and reflections on lines, line segments, angles, parallel lines and geometric figures.
- describe how two figures are congruent if the first figure can be rotated, reflected, and/or translated to create the second figure.
- given two congruent figures, describe the transformations needed to create the second from the first.
- describe and apply dilation, translation, rotation, and reflection to two-dimensional figures in a coordinate plane.
- describe how two figures are similar if the first figure can be rotated, reflected, translated and dilated to create the second figure.
- given two similar figures, describe the transformations needed to create the second from the first.
- informally prove: The angle-sum theorem; The properties of angles when parallel lines are cut by a transversal; The angle-angle criterion for similar triangles.
- explain a proof of the Pythagorean Theorem and its converse.
- determine the unknown side lengths in a right triangle problem using the Pythagorean Theorem.
- calculate the distance between two points in a coordinate plane using the Pythagorean Theorem.

		- calculate the distance between two points in a 3-dimensional case using the Pythagorean Theorem.

Lower Cape May Regional School District Mathematics Curriculum Unit 5 Overview

Content Area:Mathematics

Unit Title: Unit 5 - Probability and Statistics

Target Course/Grade Level: Grade 8

Unit Summary

Statistics is about the collection, analysis, and interpretation of data as well as the effective communication and presentation of results relying on data. In this unit, students will use a line of best fit as a statistical method to make predictions. Students will also examine scatter plots and understand different patterns and lines of best fit within graphs. They will use linear models and two variable data to explain real life situations and examine frequencies and bivariate data.

Learning Targets

CPI \#	Cumulative Progress Indicators (CPI) for Unit
8.SP.1	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit (e.g. line of best fit) by judging the closeness of the data points to the line.
8.SP.2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit (e.g. line of best

\(\left.$$
\begin{array}{|l|l|}\hline & \begin{array}{l}\text { fit) by judging the closeness of the data points } \\
\text { to the line. }\end{array} \\
\hline \text { 8.SP.3 } & \begin{array}{l}\text { Use the equation of a linear model to solve } \\
\text { problems in the context of bivariate } \\
\text { measurement data, interpreting the slope and } \\
\text { intercept. For example, in a linear model for a } \\
\text { biology experiment, interpret a slope of 1.5 } \\
\text { cm/hr as meaning that an additional hour of } \\
\text { sunlight each day is associated with an } \\
\text { additional 1.5 cm in mature plant height }\end{array} \\
\hline \text { 8.SP.4 } & \begin{array}{l}\text { Understand that patterns of association can also } \\
\text { be seen in bivariate categorical data by } \\
\text { displaying frequencies and relative frequencies } \\
\text { in a two-way table. Construct and interpret a } \\
\text { two-way table summarizing data on two } \\
\text { categorical variables collected from the same } \\
\text { subjects. Use relative frequencies calculated for } \\
\text { rows or columns to describe possible } \\
\text { association between the two variables. For } \\
\text { example, collect data from students in your } \\
\text { class on whether or not they have a curfew on } \\
\text { school nights and whether or not they have } \\
\text { assigned chores at home. Is there evidence that } \\
\text { those who have a curfew also tend to have }\end{array}
$$

chores?\end{array}\right\}\)| Explain the effect of the economy on personal |
| :--- |
| income, individual and family security, and |
| consumer decisions. |

Unit Essential Questions:

- How can you use data and a line of best fit to predict an event?
- How does graphing data between two quantities help us determine the relationship, if any, between them?
- What are the advantages of using a graph and a two-way table to organize and interpret data?
- How, why and when is a line of best fit useful?
- How does the linear model help us solve problems in the context of bivariate data?
- How can information from a problem be represented in a way to see a pattern or a frequency?
- Are interpretation and prediction an accurate conclusion for a problem?
- How can you display data in a way that helps you make decisions?.
- How can statistics (data) mislead? How can we avoid being misled?

Unit Objectives:

Students will know....

- that population is the entire group of interest or study.
- that sample is a subset of a larger population that is representative of the population.
- a sample space is a range of values or possible outcomes of a sample.
- a prediction is about inferences that can be made about a population from studying a sample of the population.
- that two data distributions can be compared using visual and numerical representations based upon measures of center and measures of variability to draw conclusions.
- Not all solutions to real -world uses of mathematics are perfect or

Unit Enduring Understandings:

- Statistics helps us understand data and use it to make decisions.
- Probability helps us understand what is likely to happen and we can use that information to make decisions.
- Scatter plots, line of best fit, and frequencies all help interpret data within a problem.
- Patterns can be modeled using different graphs.
- Straight lines are often used to model relationships.
- Benefits of personal income related to individual and family security and consumer decisions.

Unit Objectives:

Students will be able to......

- construct and interpret scatter plots.
- describe the relationships shown in a scatter-plot by identifying patterns such as: clustering; outliers; positive or negative correlation; linear association; nonlinear association.
- sketch a line of best fit on a scatter plot, justify the location of the line; and explain why or why not a given line is a good fit.
- write the equation of a line of best fit and use it to make predictions.
- use the slope and y-intercept to describe the relationship represented in a data set.
- construct two-way frequency and relative frequency tables to summarize categorical data.
beyond criticism. Often, we must defend our solutions using both mathematical and non-mathematical evidence and reasoning.
- random sampling can be used to make inferences about a population.
- generalizations about a population are only valid if the sample is representative of that population.
- Random sampling tends to produce representative samples and support valid inferences.
- use relative frequencies to describe the possible association between two variables of categorical data.
- make predictions based on data and/or line of best fit.
- conduct an experiment and display their data on a scatterplot
- present findings to the class
- analyze a misleading data display

Lower Cape May Regional School District (Insert Subject/Content Area) Curriculum Evidence of Learning

Specific Formative Assessments Utilized in Daily Lessons:

- Kahoot
- Quizlet
- BrainPOP
- Big Ideas Textbook online assignments
- Exit/Admit Slips
- Student oral presentations
- Quick quizzes
- Peer/self assessments
- Graphic organizers
- Homework practice
- Class participation
- Investigative activities

Summative Assessment Utilized throughout Units:

- Quarterly Benchmark Assessments
- End-of-unit or -chapter tests
- Student presentations
- Projects

Benchmark Assessments

- STAR

Alternative Assessments

- Read aloud directions
- Open Book Quiz
- Other as per IEP

Modifications for:

ELL's
Dictionaries
Peer partner
Special Education
Notes
Word Bank
504
Extra time
Special seating

Students at Risk of Failure

Parent Log
Extra time

Gifted and Talented Students:

Cooperative Learning Groups
Modified Assignments
Differentiated Instruction

Project-based Learning Tasks:

How Much Does A 100×100 In-N-Out Cheeseburger Cost?
Graph of the Week
Cool Shoes: linear
Domino Effect: How much does Domino's charge for pizza?
Buck Institute for Education-Projects

Vocabulary:

- In-text vocabulary should be incorporated into every unit. Word journals, vocabulary walls, and/or various other activities should be utilized by the instructor to teach vocabulary.

Unit 1 - The Number System

Cube root
Integers
Irrational numbers
Natural or counting numbers
Perfect cube
Perfect square
Radical sign
Radicand
Rational numbers
Repeating decimal
Square root
Whole numbers

Unit 2 Expressions and Equations

Absolute value
property of equality
Coefficient
Commutative property of addition
Constant
Distributive property
Division property of equality
Equation
Expression
Formula
Inverse
Like terms
Multiplication property of equality

Opposite

Reciprocal
Simplest form
Solution
Subtraction property of equality
Variable
Unit 3 Functions
Dependent variable
Function
Function rule
Independent variable
Input
Linear function
Mapping diagram
Nonlinear function
Ordered pairs
Output
Relation

Unit 4 Geometry

Cone
Congruent
Converse of Pythagorean Theorem
Corresponding angles
Cylinder
Dilation
Distance formula
Hemisphere
Hypotenuse
Interior angles
Legs of a triangle
Pi
Polygon
Pythagorean Theorem
Reflection
Regular polygon
Rotation
Scale factor
Similar solids
Slant height
Sphere
Transformation
Transversal
Unit 5 Statistics and Probability

```
Bias
Clusters
Event
    Frequency
Joint frequency
Line of best fit
Marginal frequency
Negative correlation
Outcome
Outliers
Population
Positive correlation
Raw data
Sample
Sample space
Scatter Plot
Two-way table
```


Technology:

```
Students must engage in technology applications integrated throughout the curriculum.
Applicable technology utilized in this curricula are included below:
- Scientific Calculator
- Desmos
- Microsoft EXCEL
- ChromeBook
- Kahoot
- Quizlet
- MathJong
- GeoGebra
```


Resources:

Ancillary resources and materials used to deliver instruction are included below:

- Dan Meyer's Website
- Math Interactives
- National Library of Virtual Manipulatives
- Math = Love
- Project Based Learning- BIE
- NCTM Illuminations
- BrainPOP
- Big Ideas Resources

Board of Education Approved Text(s)

Larson, R., Boswell, L., Big Ideas Learning, \& LLC. (2017). Big ideas math: A Common Core curriculum. Erie, PA.

